Yeast Engineering
 |
Yeast metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through fungal fermentations. The yeast Saccharomyces cerevisiae is already used for the production of a wide range of valuable compounds. In addition, various Candida species (e.g. C. tropicalis, C. maltosa, C. famata, C. rugosa, C. guilliermondii) represent powerful biotechnological models for bioconversions or industrial production of value-added metabolites. The efficient ability of certain Candida strains to metabolize plant by-products is now being evaluated by a number of research teams in order to produce biocompounds such as antibiotics, vitamins, complex alkanes and biofuel. The trend towards this Candida “white biotechnology” originates from the extraordinary capacities of a small number of Candida species to metabolize C5 sugars from hemicellulosic waste. Part of the EA2106 BBV research programs is now dedicated to the development of genetic tools and strategies aiming at optimizing the production of (i) pharmaceutical compounds by transferring branches of plant biosynthetic pathways in S. cerevisiae and (ii) sweeteners and biofuel by Candida sp. engineered strains.  |
Application of CFP, GFP, YFP and mCherry as a series of four fluorescent visual selection markers in Candida sp. See Papon et al. (2012) Microbiology. 158: 585-600. |
Â
Engineering Candida yeasts for ethanol production.(A) Production of ethanol from plant hemicellulose hydrolysates of plant biomass. (B) Combination of various strategies to rationally engineer Candida cells for high production of ethanol from xylose. See Papon et al. (2014) Trends in Biotechnology. 32: 167-168. |
Contact: Nicolas Papon
Publications:
Defosse, T. A., Sharma, A., Mondal, A.K., Dugé de Bernonville, T., Latgé, J.-P., Calderone, R., Giglioli-Guivarc'h, N., Courdavault, V., Clastre, M. & Papon, N. (2015). Hybrid histidine kinases in pathogenic fungi. Mol Microbiol doi:10.1111/mmi.12911 Defosse, T. A., Melin, C., Obando Montoya, E. J., Lanoue, A., Foureau, E., Glévarec, G., Oudin, A., Simkin, A. J., Crèche, J., Atehortùa, L., Giglioli-Guivarc’h, N., Clastre, M., Courdavault, V. & Papon, N. (2014). A new series of vectors for constitutive, inducible or repressible gene expression in Candida guilliermondii. J Biotechnol 180, 37–42. Houillé, B., Papon, N., Boudesocque, L., Bourdeaud, E., Besseau, S., Courdavault, V., Enguehard-Gueiffier, C., Delanoue, G., Guérin, L., Bouchara, J.-P., Clastre, M., Giglioli-Guivarc’h, N., Guillard, J. & Lanoue, A. (2014). Antifungal Activity of Resveratrol Derivatives against Candida Species. J Nat Prod 77, 1658–62. Papon, N., Courdavault, V., Lanoue, A., Clastre, M. & Brock, M.(2014a). Illuminating fungal infections with bioluminescence. PLoS Pathog 10, e1004179. Papon, N., Courdavault, V., & Clastre, M. (2014b). Biotechnological potential of the fungal CTG clade species in the synthetic biology era. Trends in Biotechnology 32, 167-8. Obando Montoya, E. J., Mélin, C., Blanc, N., Lanoue, A., Foureau, E., Boudesocque, L., Prie, G., Simkin, A. J., Crèche, J., Atehortùa, L., Giglioli-Guivarc’h, N., Clastre, M., Courdavault, V. & Papon, N. (2014). Disrupting the methionine biosynthetic pathway in Candida guilliermondii: characterization of the MET2 gene as counter-selectable marker. Yeast 31, 243–51. Foureau, E., Clastre, M., Montoya, E. J. O., Besseau, S., Oudin, A., Glévarec, G., Simkin, A. J., Crèche, J., Atehortùa, L., Giglioli-Guivarc’h, N., Courdavault, V. & Papon, N. (2014). Subcellular localization of the histidine kinase receptors Sln1p, Nik1p and Chk1p in the yeast CTG clade species Candida guilliermondii. Fungal Genet Biol 65, 25–36. Papon, N., Courdavault, V., Clastre, M. & Bennett, R. J. (2013b). Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog 9, e1003550. Papon, N., Savini, V., Lanoue, A., Simkin, A. J., Crèche, J., Giglioli-Guivarc’h, N., Clastre, M., Courdavault, V. & Sibirny, A. A. (2013a). Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Curr Genet 59, 73–90. Foureau, E., Courdavault, V., Rojas, L. F., Dutilleul, C., Simkin, A. J., Crèche, J., Atehortùa, L., Giglioli-Guivarc’h, N., Clastre, M. & Papon, N. (2013a). Efficient gene targeting in a Candida guilliermondii non-homologous end-joining pathway-deficient strain. Biotechnol Lett 35, 1035–43. Foureau, E., Courdavault, V., Simkin, A. J., Sibirny, A. A., Crèche, J., Giglioli-Guivarc’h, N., Clastre, M. & Papon, N. (2013b). Transformation of Candida guilliermondii wild-type strains using the Staphylococcus aureus MRSA 252 ble gene as a phleomycin-resistant marker. FEMS Yeast Res 13, 354–8. Foureau, E., Courdavault, V., Navarro Gallón, S. M., Besseau, S., Simkin, A. J., Crèche, J., Atehortùa, L., Giglioli-Guivarc’h, N., Clastre, M. & Papon, N. (2013c). Characterization of an autonomously replicating sequence in Candida guilliermondii. Microbiol Res 168, 580–8. Foureau, E., Clastre, M., Millerioux, Y., Simkin, A. J., Cornet, L., Dutilleul, C., Besseau, S., Marais, E., Melin, C. , Guillard, J., Crèche, J., Giglioli-Guivarc'h, N., Courdavault, V. & Papon, N. (2012). A TRP5/5-fluoroanthranilic acid counter-selection system for gene disruption in Candida guilliermondii. Curr Genet 58, 245–54. Papon, N., Courdavault, V., Clastre, M., Simkin, A. J., Crèche, J. & Giglioli-Guivarc’h, N. (2012). Deus ex Candida genetics: overcoming the hurdles for the development of a molecular toolbox in the CTG clade. Microbiology 158, 585–600. Millerioux, Y., Clastre, M., Simkin, A. J., Courdavault, V., Marais, E., Sibirny, A. A., Noël, T., Crèche, J., Giglioli-Guivarc’h, N. & Papon, N. (2011a). Drug-resistant cassettes for the efficient transformation of Candida guilliermondii wild-type strains. FEMS Yeast Res 11, 457–63. Millerioux, Y., Clastre, M., Simkin, A. J., Marais, E., Sibirny, A. A., Noël, T., Crèche, J., Giglioli-Guivarc’h, N. & Papon, N. (2011b). Development of a URA5 integrative cassette for gene disruption in the Candida guilliermondii ATCC 6260 strain. J Microbiol Methods 84, 355–8. Courdavault, V., Millerioux, Y., Clastre, M., Simkin, A. J., Marais, E., Crèche, J., Giglioli-Guivarc’h, N. & Papon, N. (2011). Fluorescent protein fusions in Candida guilliermondii. Fungal Genet Biol 48, 1004–11. |
Â